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Energy dissipation in an explosion in the ground was considered in [i, 2]. In this 
paper we analyze the distribution of the different forms of energy as a function of the time 
and distance, taking into account the possibility of decompaction of the medium (the phe- 
nomenon of dilation). It is based on the results obtained in [3] in which the problem of 
the motion of a shock front is solved and the behavior of dilating and nondilation media 
between the shock front and the expanding cavity is analyzed. 

In the case of spherical symmetry and when there is no thermal conduction, the equa- 
tion for the internal energy of a continuous medium has the form 

p(Oe/Ot q- uOe/Or) = a~Ou/Or q- 2%u/r,  (1) 

where e is the amount of internal energy per unit mass; 0, density of the medium; u, mass 
velocity; ~ , tangential stress; t, time; and r, radius of the Euler coordinate. Equation 
(1) is considered at points of the medium situated between a cavity a(t) and the shock front 
R(t). 

The dilation equation, assuming spherical symmetry and that ~u/3r~0, has the form 

Ou/Or + 2u/r = A(u/r  - -  Ou/Or), 

where A is the rate of dilation [4]. The condition of plasticity of the medium behind the 
wave front can be written in the form 

~, - -  ar = k ~- m ( ~  + 2%), 

where k and m are known constants. Changing to Lagrangian coordinates (ro, t) and using the 
last two relations, Eq. (i) can be written in the form 

o-~ = (r162 + n -- 2) p -- 3mJ rp" (2) 

where n = (2 -- A)/(I + A~ ~ = 6m/(2m + i), p = -o r . The relation between the Lagrangian 
(ro, t) and the Euler (r, t) coordinates is shown in Fig. i, where curve I describes the 
motion of the shock front R(t), curve 2 describes the motion of the cavity a(t), curve 3 
corresponds to the change with time of the Euler coordinate r of the point of the medium 
with Lagrangian coordinate ro = const, and ao is the initial radius of the cavity. Integrat- 
ing Eq. (2) along curve 3 (Fig. I) we obtain 

t 

ep(ro, t )=-e(ro ,  t ) - - e f ( r o ) =  . ( r  P - - ~ m  ~ d ~ ,  (3) 
tl(~o) 

where t:(r) is the function inverse to the function R(t), ep(ro,t), energy of plastic defor- 
mation, ef(ro) = es(ro) + Co, energy on the front, es(ro) , energy of shock compression, and 
Co, internal energy of the medium in front of the front. Hence, the internal energy of a 
particle of the medium with Langrangian coordinate ro at the instant of time t is ep(ro,t) + 
es(ro) + Co. All the above energies relate to unit mass~ 

The energy,of shock compression es(ro) is determined in the usual way from the laws 
of conservation of mass, momentum, and energy on the front. In our notation it has the form 
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es (ro) -- (r -~ ef PoR2(tl(ro))/21, (4) 

where Po and po are the density and pressure, respectively, in the unperturbed medium, cf = 
1- Pa/Pf, jumpin density on the front, pf, density on the front, and R(t), velocity of the 
front. 

To calculate (3) we must take into account the fact that 

t 

u (re, T) / (l/p - -  l /pf)/(2 n), if n - ~  9 
tl(~o) r (ro, T) p (to, T) dT : - '  ( ( I /p f )  In (r/ro), if n -- 2. 

since u(ro, t) = ~r(ro, t)/St, while p (ro, t) = pf(ro/r) 2-n [3]. It follows from [3] that 
in the functions p(ro, t), r(ro, t) the time dependence is present in terms of the radius of 
the front R(t)~ p(ro, t) - p,(ro, R(t)), 

I 

r(r  o, t ) = r l  (ro, R(t))  -- [(i ef) r~ +z + sfR n+l (t)] ~ .  (5) 

After replacing the variable in the integral from Eq. (3) for the energy of plastic deforma- 
tion we obtain the following expression, which is convenient for numerical calculations: 

R(t) 
ep(ro, t) = (~ ,-{- n--2)  ef f p~(ro, q) ka (__~ ~f) 

r~ln_1 �9 q=dq (2 -- n) - -  (6) pfr2o-n ro (ro, q) 3m 

i f  t h e  medium d i l a t e s  ( n g  2 ) ,  and 

RCt) 

ep(ro, t) = a s f  I' Pl ( r~  I ku 
-~f rdo r81 (ro, q'dq --  3-~-f Into (7) 

if the medium does not dilate (n = 2). 

The kinetic energy, referred to unit mass, is ek(ro , t) = u2(ro, t)/2, where, as is 
well k n o w n  [3], 

u(ro, t)= qR"(t)h(t)/,?(~o, t). (8) 

Hence, all the energy per unit mass for a particle with Lagrangian coordinate ro at the in- 
stant of time t will be ep(ro, t) + es(ro) + ek(ro , t) +Co. The sum of the first two terms 
is the increment in internal energy, while the sum of the first three is the increment of 
the total energy with respect to the initial energy eo of the unperturbed state. The total 
energy Ep(t), for plastic deformation, the total energy Es(t) , for shock compression, and 
also the total kinetic energy Ek(t ) and the initial energy Eo(t) up to the instant of time t 
are given, respectively, by 

l~(t) 

Ep(s, k, o) (t) -- 4Z~po J" r~ep(~, k, o) (ro, t) dro. 
a 0 
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The final equations have the form 

n(t) fret) } . } C  q)- 
Ep(t) = Pf ao to[/) ~ r21n-l(ro 'q) qndq 

if n # 2, and 
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Fig. 3 

4~k~z 
dr~ 9m ( 2 - - n ) [ ( i - - s f ) a ~ + e f  Ra( t ) - ra(a~  (9) 

R(t) {i!t) 
4n~Po~f ~" 2 

E p ( t ) -  P f  ~Jo r~ 
p~(ro, q) } 4nk=[ R(t) Po aslnr(%,.t)] 
r~ (ro, q) q2dq dr~ -- 9----~ ~ ~ Ra (t) In r (ao, t-------) p--f o ao 

(lO) 

if n = 2; 

* ( 1 1 )  
E s (t) = (4/3) nSfpo (R 3 (t) --  ao 3) -[- 2npos,~f t" R2 (s) t~ a (s) ds; 

0 

R(t) 

4 = 9 2 ~2n (t) t~ 2 (t) S r 2n t) dr~ (12) Ek(t) -~Ooefn (ro' 
o 0 

the last integral when there is no dilation is also taken for n = 2 and has the form 

E k(t) = 2apfs2fR 4 (t)/~2 (t) (i/r (a o, t) - - i / R  (t)), 

E o (t) = (4/3) ~Po (/~a (t) --  a]) eo. 

(13) 

The quantities R(t), p1(ro, R(t)), required for calculations using Eqs. (4), (6), (7), and 
(9)-(13), are determined using the equation for R(t) from [3]. 

The total increment of all the internal energy Ea(t) = Ep(t) + Es(t ) while E(t) = 
Ea(t) + Ek(t) is the total increment of all the energy and should be equal to the work A(t) 
of the product of the explosion performed on the medium. The equation A(t) = Ep(t) + 
Es(t) + Ek(t) can be used as an objective check of the correctness of the calculations. We 
have the following expression for the work A(t) taking Eqs. (5) and (8) into account, 
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TABLE i 

Form of total, Form of total 
energy, I A =o, l~ A=o energy, I A=o, l~ a=o 

Ep 
E s, 

Ekl 
E a = Ep + E S 

4,03. lO l~ 
4,63. tO TM 

2,46. tO TM 

8,66. lO TM 

4,88.i0 l~ 
4,iO.lO i~ 
2,40.i0i~ 
8,98.i012 

E=E a + E k 
A 
IA--EI 
t00 [A--E[ 

i , t t - t 0  ia 
i , l l - lO TM 

4,89. lO~ 

0,04% 

1,t4.10 la 
t , 1 4 . t 0  la 
6,t2.t0'  

0,05% 

r(%,t) mr) 
A(t)~-4,~ j" p(ao, z) r"(a o,~)dr(a o,~1 -~4~ef j '  

a 0 o 0 

~ l + l ] A  pi(ao, q ) [ ( t - - e f ) a ; + l - ~ e f q  ] qndq. (14) 

The problem of the propagation of a spherically symmetrical shock wave in a plastic medium 
can be solved in closed form if, in addition to the laws of conservation, we are given the 
change in the pressure in the cavity p(ao t) ~ p,(ao, R(t)). It is assumed that the explod- 
ing cavity expands adiabatically with an adiabatic constant 7 [2, 3], i.e., 

pi(ao, R(t)) = p k  o [ao/q(ao ' R(t)) lay, 

where Pko is the initial pressure in the cavity. Then the integral in Eq. (14) is also 

taken for the work of the explosion products A(t) and we have 

(4/3) [ t '  - (r (ao, 

A ( t ) = {  if V =/= t ,  

1 4na~Pko In (r (ao, t)/ao) , 
i f y = l .  

In Figs. 2 and 3 and in Table i we give some results of calculations carried out for 
the following initial data; Pko. = 62 kbar, po = 0.25 kbar, po = 2.5 g/cm s, ao = 7 m, ef = 
0.2, k = 0.35 kg/cm 2, m = 0.45, y = 1.5, A = 0.14 or A = 0. The letter D in Figs. 2 and 3 
denote curves giving the relations taking dilation into account (A = 0.14). The continuous 
curves represent the energy of plastic deformation, the broken curves represent the energy 
of shock compression, and the dash--dot curves represent the kinetic energy. The results given 
in Fig. 2 and in the table relate to the instant of time t = 14 msec. At this instant of time 
when dilation occurs (A = 0.14) R = 24 m, a = 13.8 m, R = 636 m/sec, and the acceleration 

= 30.8 km/sec2; the corresponding numbers ignoring decompaction (A = 0) will be R = 23.4 
m, a = 14.1 m, R = 605 m/see, and ~ = 29.5 km/sec 2. 

Figure 2 shows the internal energies e~, es, and e k as a function of the Euler radius 
r. As can be seen, the increment in internal energy per unit mass ep + e s is particularly 
large close to the exploding cavity. When the phenomenon of dilation is taken into account 
the slope of this curve is smoothed out somewhat. 

Table 1 shows values of the total energy; IA -- El, absolute error of the calculation; 
and, i00 [A --EI/A , relative error. Figure 3 shows as a percentage the fraction of the dif- 
ferent forms of the total energy as a function of time, i.e., graphs of the functions i00 
Ep(t)/E(t), i00 Es(t)/E(t) , and i00 Ek(t)/E(t). The Calculations show that in this time 
interval the fraction of the energy of shock compression is approximately constant: 40- 
41% for a dilating medium and 35-37% for a nondilating medium. As the time increases the 
total fraction of the kinetic energy falls, and the total fraction of the energy of plastic 
deformation increases. Consideration of the dilation reduces the fraction of the energy of 
plastic deformation. 
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